Customer Cases
Pricing

What is WeTest Monkey Testing?

Monkey testing is an indispensable technology in software compatibility testing. It is also called standard compatibility testing. It tests the program by inputting a large number of random clicks into the software.

Monkey testing is an indispensable technology in software compatibility testing. It is also called standard compatibility testing.It tests the program 

by inputting a large number of random clicks into the software.

Features of Monkey testing:

  • Input is random
  • A large number of meaningless events may be generated
  • Unable to conduct targeted testing
  • The errors found may not be reproduced

Through Monky testing, you can discover basic compatibility issues in the APP, such as ANR, corresponding delays, and crashes.
WeTest Monkey Testing tool can help you quickly Monkey test your application. You can:

  • No need to write a single line of code
  • Tested on a large number of real machines
  • Locate problems through detailed test logs, screenshots and videos

WeTest has a powerful real device room, which includes a large number of Android and iOS devices. If your testing team wants to be able to conduct basic compatibility testing on real devices, WeTest is a good choice for you. you can:

  • Access a large number of real devices anytime, anywhere
  • Equipment brands cover more than ten global mainstream brands such as Apple, Samsung, Xiaomi, Vivo, OPPO, and Huawei.

Run on real devices

Monkey testing is a valuable tool in software testing. It will find more good bugs in the early stages of application development. It can be effectively exploited to improve the quality and reliability of your application by taking advantage of its uniqueness.

Latest Posts
1Top Performance Bottleneck Solutions: A Senior Engineer’s Guide Learn how to identify and resolve critical performance bottlenecks in CPU, Memory, I/O, and Databases. A veteran engineer shares real-world case studies and proven optimization strategies to boost your system scalability.
2Comprehensive Guide to LLM Performance Testing and Inference Acceleration Learn how to perform professional performance testing on Large Language Models (LLM). This guide covers Token calculation, TTFT, QPM, and advanced acceleration strategies like P/D separation and KV Cache optimization.
3Mastering Large Model Development from Scratch: Beyond the AI "Black Box" Stop being a mere AI "API caller." Learn how to build a Large Language Model (LLM) from scratch. This guide covers the 4-step training process, RAG vs. Fine-tuning strategies, and how to master the AI "black box" to regain freedom of choice in the generative AI era.
4Interface Testing | Is High Automation Coverage Becoming a Strategic Burden? Is your automated testing draining efficiency? Learn why chasing "automation coverage" leads to a maintenance trap and how to build a value-oriented interface testing strategy.
5Introducing an LLMOps Build Example: From Application Creation to Testing and Deployment Explore a comprehensive LLMOps build example from LINE Plus. Learn to manage the LLM lifecycle: from RAG and data validation to prompt engineering with LangFlow and Kubernetes.